On inverse scattering at high energies for the multidimensional Newton equation in electromagnetic field

نویسنده

  • Alexandre Jollivet
چکیده

where V ∈ C(R,R), B(x) is the n × n real antisymmetric matrix with elements Bi,k(x), Bi,k ∈ C(R,R) (and B satisfies the closure condition), and |∂j1 x V (x)| + |∂j2 x Bi,k(x)| ≤ β|j1|(1 + |x|)−(α+|j1|) for x ∈ R, 1 ≤ |j1| ≤ 2, 0 ≤ |j2| ≤ 1, |j2| = |j1| − 1, i, k = 1 . . . n and some α > 1. We give estimates and asymptotics for scattering solutions and scattering data for the equation (∗) for the case of small angle scattering. We show that at high energies the velocity valued component of the scattering operator uniquely determines the X-ray transforms P∇V and PBi,k (on sufficiently rich sets of straight lines). Applying results on inversion of the X-ray transform P we obtain that for n ≥ 2 the velocity valued component of the scattering operator at high energies uniquely determines (∇V,B). We also consider the problem of recovering (∇V,B) from our high energies asymptotics found for the configuration valued component of the scattering operator. Results of the present work were obtained by developing the inverse scattering approach of [R. Novikov, 1999] for (∗) with B ≡ 0 and of [Jollivet, 2005] for the relativistic version of (∗). We emphasize that there is an interesting difference in asymptotics for scattering solutions and scattering data for (∗) on the one hand and for its relativistic version on the other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies

We consider the multidimensional Newton-Einstein equation in static electromagnetic field ṗ = F (x, ẋ), F (x, ẋ) = −∇V (x) + 1 c B(x)ẋ, p = ẋ √ 1− |ẋ|2 c2 , ṗ = dp dt , ẋ = dx dt , x ∈ C(R,R), (∗) where V ∈ C2(R,R), B(x) is the d× d real antisymmetric matrix with elements Bi,k(x) = ∂ ∂xi Ak(x)− ∂ ∂xkAi(x), and |∂ j xAi(x)|+ |∂j xV (x)| ≤ β|j|(1 + |x|)−(α+|j|) for x ∈ R, |j| ≤ 2, i = 1..d and so...

متن کامل

Inverse scattering at high energies for the multidimensional Newton equation in a long range potential

We define scattering data for the Newton equation in a potential V ∈ C2(Rn,R), n ≥ 2, that decays at infinity like r−α for some α ∈ (0, 1]. We provide estimates on the scattering solutions and scattering data and we prove, in particular, that the scattering data at high energies uniquely determine the short range part of the potential up to the knowledge of the long range tail of the potential....

متن کامل

On inverse scattering for the multidimensional relativistic Newton equation at high energies

where V ∈ C(R,R), |∂ xV (x)| ≤ β|j|(1 + |x|)−(α+|j|) for |j| ≤ 2 and some α > 1. We give estimates and asymptotics for scattering solutions and scattering data for the equation (∗) for the case of small angle scattering. We show that at high energies the velocity valued component of the scattering operator uniquely determines the X-ray transform PF. Applying results on inversion of the X-ray tr...

متن کامل

On inverse problems in electromagnetic field in classical mechanics at fixed energy

Abstract. In this paper, we consider inverse scattering and inverse boundary value problems at sufficiently large and fixed energy for the multidimensional relativistic and nonrelativistic Newton equations in a static external electromagnetic field (V,B), V ∈ C, B ∈ C in classical mechanics. Developing the approach going back to Gerver-Nadirashvili 1983’s work on an inverse problem of mechanics...

متن کامل

On inverse problems for the multidimensional relativistic Newton equation at fixed energy

In this paper, we consider inverse scattering and inverse boundary value problems at sufficiently large and fixed energy for the multidimensional relativistic Newton equation with an external potential V , V ∈ C. Using known results, we obtain, in particular, theorems of uniqueness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008